Lecture 13

Gidon Rosalki

2025-06-29

This content will not appear in the exam this year!

1 Complexity sets, with randomness

We want to extend the TM model such that we can use random algorithms, which include a runtime. This means that the results of the algorithm can be dependent on random coin flips. We will add to the TM a tape of random coins. At the start of a run, this tape will only include 1 or 0, in every cell, at equal probability, independently in each cell. We will define the complexity set for this TM machine.

Definition 1.1 (ZPP). This is the set of all the language L such that they have a TM M that decides L, in an expected time that is polynomial. That is to say, the runtime is on average (by the random coins), it is bound by a polynomial.

Theorem 1.

$$P \subseteq ZPP$$

Proof. If $L \in P$, then there is a deterministic polynomial TM that decides it. We can add to this machine a coins tape, and so we get a machine that always runs in polynomial time, and thus also runs in expected polynomial time.

Definition 1.2 (RP). The set RP contains all the languages L such that there exists a TM M that runs in polynomial time (always). It holds that

- $w \in L \implies \mathbb{P}[M(w) = q_{acc}] \ge \frac{1}{2}$
- $w \notin L \implies \mathbb{P}\left[M\left(w\right) = q_{rej}\right] = 1$

Theorem 2.

$$RP \subseteq NP$$

Proof . We will consider the polynomial recogniser for a language in NP, in comparison to a machine that is RP. In both cases:

- The runtime is polynomial
- If $w \notin L$, then it always holds that $M(w) = q_{\text{rej}}$
- If $w \in L$ then there is a run such that $M(w) = q_{acc}$. In the RP machine, the requirement is that half of the runs will return q_{acc}

Therefore, the RP machine is a specific case of a polynomial recogniser

Theorem 3. $P \subseteq RP$

Proof. In both cases, the machine runs in polynomial time. In both cases, the machine always responds q_{rej} in the case where $w \notin L$. The machine in P will always return q_{acc} when $w \in L$, and this means it returns q_{acc} more than $\frac{1}{2}$ of the time.

Definition 1.3 (coRP). The set coRP contains all the languages L such that $\overline{L} \in RP$. Or, in other words, $L \in coRP$ if and only if there exists a TM M for L such that:

- M always runs in polynomial time
- For every $w \in L$, $M(w) = q_{acc}$
- For every $w \notin L$, it holds that $\mathbb{P}\left[M\left(w\right) = q_{rej}\right] \geq \frac{1}{2}$

Explanation:

$$L \in \mathrm{coRP} \Leftrightarrow \overline{L} \in \mathrm{RP}$$

$$\Leftrightarrow \mathrm{There} \ \mathrm{is} \ \mathrm{an} \ \mathrm{RP} \ \mathrm{machine} \ \mathrm{for} \ \overline{L}$$

 \Leftrightarrow There is a coRP machine for L

Where the final transition is possible from swapping the $q_{\rm acc}$ and $q_{\rm rej}$ states.

Theorem 4.

$$RP \cap coRP = ZPP$$

Proof. Below

Definition 1.4. The set BPP contains all the languages L such that there is a TM M that runs in polynomial time, that correctly answers $\geq \frac{2}{3}$ (both ways, both for in and not in)

This is to say:

$$w \in L \implies \mathbb{P}[M(w) = q_{\text{acc}}] \ge \frac{2}{3}$$

 $w \notin L \implies \mathbb{P}[M(w) = q_{\text{rej}}] \ge \frac{2}{3}$

Exercise 1.

$$P \subseteq BPP$$

Solution. In both cases, the machine runs in polynomial time, and a deterministic polynomial machine that decides L will necessarily guarantee that the probability to respond correctly is always greater than $\frac{2}{3}$.

Theorem 5.

$$BPP \subseteq EXP$$

Proof. Let there be $L \in BPP$, and M a BPP machine for L. We will use M to build M', that decides L in exponential time.

M' will run as follows:

Run over all the options for random coin flips. For every possibility (for a string over $\{0,1\}$), M' will run M(w). M' will count how many times it receives q_{acc} , and answer according to the majority.

Correctness: Trivial, since a run over a particular coin tape is deterministic.

Runtime: Every run of M(w) requires polynomial time. There are 2^l runs, where l is the number of cells on the coin tape. However, since M runs in polynomial time, it can only manage to read at most a polynomial number of coins, which is to say $l \leq poly(n)$, and so in total the runtime of M' is

$$< poly(n) \cdot 2^{poly(n)}$$

which is to say, limited by an exponential value of n.

Our next theorem is that $RP \subseteq BPP$. However, we will first show that the size of the mistake is a constant, as small as we would like. We will write RP(p) like the set RP, but with the one way mistake $\leq p$. Therefore, $RP = RP\left(\frac{1}{2}\right)$

Theorem 6.

$$RP = RP\left(\frac{1}{2}\right) = RP\left(\frac{1}{4}\right)$$

Which is to say $L \in RP$ if and only if there is a TM that runs in polynomial time, and enables

$$w \in L \implies \mathbb{P}[M(w) = q_{acc}] \ge \frac{3}{4}$$

 $w \notin L \implies \mathbb{P}[M(w) = q_{rej}] = 1$

Proof. It is clear that $RP\left(\frac{1}{4}\right)\subseteq RP\left(\frac{1}{2}\right)$. We now need to show that $RP\left(\frac{1}{2}\right)\subseteq RP\left(\frac{1}{4}\right)$: Let there be $L\in RP$, which is to say that there exists a TM M that runs in polynomial tie, and there is a one way failure of probability $\leq \frac{1}{2}$. We will use it to make a TM M' that runs in polynomial time, with one way failure probability $\leq \frac{1}{4}$.

Construction: M' will run as follows: Run M(w) twice, and return q_{rej} if and only if in both runs $M(w) = q_{\text{rej}}$. Runtime: Trivial, runtime of M is polynomial, and so too the runtime of M'

Correctness: If $w \notin L$, then it always holds that $M(w) = q_{rej}$, and so $M'(w) = q_{rej}$. If $w \in L$, then \mathbb{P}

$$w \notin L \implies \mathbb{P}\left[M\left(w\right) = q_{\text{rej}}\right] = 1 \implies \mathbb{P}\left[M'\left(w\right) = q_{\text{rej}}\right] = 1$$

$$w \in L \implies \mathbb{P}\left[M\left(w\right) = q_{\text{rej}}\right] \le \frac{1}{2} \implies \mathbb{P}\left[M'\left(w\right) = q_{\text{rej}}\right] \le \left(\frac{1}{2}\right)^2 = \frac{1}{4}$$

So, to return to the theorem we wanted

Theorem 7.

$$RP \subseteq BPP$$

Proof . Through the above theorem:

$$RP = RP\left(\frac{1}{3}\right)$$

Which is to say, theer is a polynomial TM with a one way failure rate that is $\leq \frac{1}{3}$, which is a specific case of a machine BPP, where we can have a two way failures rate of $\leq \frac{1}{3}$.

Theorem 8.

$$coRP \subseteq BPP$$

Proof.

Theorem 9. BPP is closed to inverse, which is to say BPP = coBPP.

Proof. By swapping the states $q_{\rm acc}$ and $q_{\rm rej}$, on a BPP machine, we get a BPP machine for the inverse language \Box So from that helpful theorem, we can now show:

$$L \in coRP \implies \overline{L} \in RP$$

 $\implies \overline{L} \in BPP$
 $\implies L \in BPP$

What about NP?

$$P \subseteq ZPP \subseteq RP \subseteq NP \subseteq EXP$$

We are left with the theorem that we did not prove earlier:

Theorem 10.

$$RP \cap coRP = ZPP$$

Proof. We will assume that $L \in RP \cap coRP$, and show that $L \in ZPP$. That is to say that there is an RP machine for L, and that there is a coRP machine for L. Both machines run in polynomial time, both with a (different) one way failure rate.

	M_1	M_2
$w \in L$	$\mathbb{P}\left[M_1\left(w\right) = q_{\rm acc}\right] \ge \frac{1}{2}$	$\mathbb{P}\left[M_2\left(w\right) = q_{\rm acc}\right] = 1$
$w \notin L$	$\mathbb{P}\left[M_1\left(w\right) = q_{\text{rej}}\right] = 1$	$\mathbb{P}\left[M_2\left(w\right) = q_{\text{rej}}\right] \ge \frac{1}{2}$

Table 1:

We want to show with M_1 and M_2 to create M which is a ZPP machine for L. This is to say, **always** responds correctly. The runtime of M has the expected runtime of polynomial (by the coins).

Construction: M will run as follows:

- 1. Run $M_1(w)$. If M_1 responds $q_{\rm acc}$, then return $q_{\rm acc}$
- 2. Run $M_2(w)$. If M_2 responds q_{rej} , then return q_{rej}
- 3. Return to (1)

Correctness: If in some step, $M_1(w) = q_{\text{acc}}$, then necessarily $w \in L$, and therefore the response of M is correct. If in some step $M_2(w) = q_{\text{rej}}$, then necessarily $w \notin L$, and therefore the response of M is correct.

Runtime: We will assume that $w \in L$. The runtime of M is the runtime of both the machines, times the number of times that $M_1(w)$ will return q_{rej} . We will use i to mark the number of times that this occurred.

$$\mathbb{P}\left[M\left(w\right) = q_{\text{rej}}\right] \le \frac{1}{2}$$

Therefore

$$\mathbb{P}\left[\#\left(M\left(w\right)=q_{\mathrm{rej}}\right)=i\right] \leq \left(\frac{1}{2}\right)^{i}$$

and so the expected runtime is

$$\leq \sum_{i=0}^{\infty} \left(\frac{1}{2}\right)^{i} \cdot poly\left(n\right) \cdot i = \theta\left(1\right) \cdot poly\left(n\right)$$
$$= poly\left(n\right)$$

So we have shown that $L \in RP \cap coRP \implies L \in ZPP$.

We will now show

$$L \in ZPP \implies L \in RP \cap coRP$$

We will begin from $L \in ZPP \implies L \in RP$. That is to say, there is a TM M that decides L in polynomial time (on average), which we can use to build a TM M_1 that always runs in polynomial time, with a one way failure rate $\leq \frac{1}{2}$. To resolve this, we will recall Markov's inequality. For some non negative random variable X,

$$\mathbb{P}\left[X > a \cdot \mathbb{E}\left[X\right]\right] \le \frac{1}{a}$$

We will build M_1 as follows: M_1 will run M(w) with a counter for the number of steps, and will stop the run should it require more than $2 \cdot \mathbb{E} [\# (\text{number of steps})]$. If M stopped before this, M_1 will return its response, and if M does not stop, then M_1 will return q_{rej} .

Runtime: The runtime of M_1 is 2 times the expected value of the runtime of M, and so is polynomial in n. Correctness:

$$w \notin L \implies \mathbb{P}\left[M_1\left(w\right) = q_{\text{rej}}\right] = 1$$

If $w \in L$, then M_1 responds correctly **if and only if** M(w) finishes running in time ≤ 2 · the expected value, which is to say that M responds incorrectly **if and only if** the runtime of $M(w) > 2 \cdot \mathbb{E}$. According to Markhov's inequality, this happens with a probability $\leq \frac{1}{2}$. This is to say, if $w \in L$, then

$$\mathbb{P}\left[M'\left(w\right) = q_{\mathrm{acc}}\right] \geq \frac{1}{2}$$

We have finished showing that $ZPP \subseteq RP$. We need to show that $ZPP \subseteq coRP$, and then derive that $ZPP \subseteq RP \cap coRP$. In order to show that $ZPP \subseteq coRP$ we will build a coRP machine M_2 . The construction is almost exactly the same as M_1 , but instead if we stop the machine for counting too high, then M_2 will return q_{acc}