Lecture 3

Gidon Rosalki

2025-04-06

 $\textbf{Notice:} \ If you find any mistakes, please open an issue at \texttt{https://github.com/robomarvin1501/notes_computability_complete} \ and the property of the p$

1 Reminder

A legal run on $w \in \Sigma^*$ from $q \in Q$: For the letters $w = w_1 \dots w_k$ is a series of states q^0, \dots, q^k , such that $q^0 = q$, and $q^i \in \delta(q^{i-1}, w_i)$.

A run on w is a correct run on w that starts at a state within Q_0 .

The extended transition function of A: $\delta^*: 2^Q \times \Sigma^* \to 2^Q$ where $\delta^*(S, w)$ is

- 1. The collection of states that we may get to from a correct run on w that starts in some state within S.
- 2. S when $w = \varepsilon$, otherwise when $w = w'\alpha$.

Theorem 1. 1 and 2 are equivalent definitions for δ on w

Proof. This is not a proof, but the proof is by induction.

Theorem 2. NREG = REG

Proof . • $REG \subseteq NREG$: This is true since a DFA is turned into an NFA through a very simple change in minor definitions.

• $NREG \subseteq REG$: Let there be $L \in NREG$, and $A = (\Sigma, Q, Q_0, F, \delta)$, an NFA that recognises it. We will build an automaton A_d that decides L through A_d . We know that A_d has the same alphabet, but what is its states? The concept: A_d will have a state for every subset $S \subseteq Q$, when running A_d on w, A_d will get to state $\delta^*(Q_0, w)$. Considering this, let us define $A_d = (\Sigma, 2^Q, Q_0, F_d, \delta_d)$, where

$$F_{d} = \{ S \subseteq Q : S \cap F \neq \emptyset \}$$
$$\delta_{d}(S, \alpha) = \delta^{*}(S, \alpha)$$

Our theorem is that $L(A_d) = L(A)$, and it is sufficient to show that $\delta^*(Q_0, w) = \delta_d^*(Q_0, w)$, since if we do show this then we get $w \in L(A_d) \Leftrightarrow \delta_d^*(Q_0, w) \in F_d \Leftrightarrow \delta^*(Q_0, w) \in F_d \Leftrightarrow \delta^*(Q_0, w) \cap F \neq \emptyset \Leftrightarrow w \in L(A)$. By induction on |w|:

Basis: $\delta^* (Q_0, \varepsilon) = Q_0 = \delta^* (Q_0, \varepsilon)$. $w = w'\alpha$:

$$\delta_d^* (Q_0, w'\alpha) = \delta_d \left(\delta_d^* (Q_0, w'), \alpha \right)$$

$$= \delta_d \left(\delta^* (Q_0, w'), \alpha \right)$$

$$= \delta^* \left(\delta^* (Q_0, w'), \alpha \right)$$

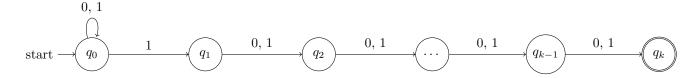
$$= \delta^* (Q_0, w'\alpha)$$

as required.

Do we absolutely need the exponential growth of states? Yes. Example: Let there be $\Sigma = \{0,1\}$, for $k \in \mathbb{N}$, we will define

$$L_k := \Sigma^* \cdot \{1\} \cdot \Sigma^{k-1}$$

The NFA



recognises the alphabet through k+1 states.

Definition 1.1 (Myhill-Nerode (MN)). If L is a language on Σ , and $x, y \in \Sigma^*$. We will say that x and y are not MN-equivalent with respect to L if there exists a word $z \in \Sigma^*$ such that $xz \in L \land yz \notin L \lor xz \notin L \land yz \in L$. In this case we will write $x \nsim_L y$ and we will write that z is the differentiating suffix. If there is no differentiation suffix, then we will write that $x \sim_L y$, and say that they are equivalent with respect to L.

Benefits:

- 1. We will assume that $x \sim_L y$ and $x \in L$, then $y \in L$
- 2. We will assume that $x \nsim_L y$, and L = L(A) where $A \in DFA$, then when running on x and on y, A will reach different states, since otherwise A would reach the same state on xz, and on yz for every suffix z.
- 3. If there are n words in Σ^* , that are not equivalent, then A has at least n states. Or If in the ratio \sim_L there are k equivalency sets, then in the DFA that decides L, there are at least k states.

Conclusion If there are ∞ equivalency states \sim_L , then $L \notin REG$.

To sum up, if \sim_L has at least k sets, then in the automaton that decides L, there are at least k states, therefore if there is A that decides L, then the number of sets in \sim_L is at most n

For every 2 different words $x, y \in \{0, 1\}^*$, $x \nsim_{L_k} y$: For words such as these, there exists $1 \le i \le k$ such that $x_i \ne y_i$. We will define $z = 0^{k-i+1}$. This way the *i*th letter is *k* before the end of both words. This is to say that in xz, the *k*th letter before the end is x_i , and is y_i in yz. So only one of xz and yz will be in the language L_k , and so $y \nsim_{L_k} x$, and so the automaton that decides L_k has at least 2^k states.

 $\Sigma = \{a,b\}, \ L = \{a^nb^n : n \geq 0\}.$ For every $m \neq n, \ a^n \nsim_L a^m$. This comes from $a^nb^n \in L, a^mb^n \notin L$, and so $L \notin REG$.

Symbol: $[w]_L$ the equivalency set of w with respect to L (as defined in discrete maths)

Theorem 3. If L is a language on Σ , and in \sim_L there are $k < \infty$ equivalency sets, then $L \in REG$. and there is a DFA for L with k states.

Proof. Concept: We will symbolise the set of equivalency sets in \sim_L as Q. These will be the states, and thus $\delta^*(q_0, w) = [w]_L$.

Building A: $A = (\Sigma, Q, [\varepsilon]_L, F, \delta)$ where

$$F = \{[w]_L : w \in L\}$$

$$\delta\left([w]_L, \alpha\right) = [w\alpha]_L$$

We need to verify that if $[w]_L = [y]_L$, then $[w\alpha]_L = [y\alpha]_L$:

$$\begin{split} [w]_L &= [y]_L \implies w \sim_L y \\ &\implies \forall z \ wz \in L \Leftrightarrow yz \in L \\ &\implies \forall z' \ w\alpha z' \in L \Leftrightarrow y\alpha z' \in L \\ &\implies w\alpha \sim_L y\alpha \\ &\implies [w\alpha]_L = [y\alpha]_L \end{split}$$